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1. Introduction

In several recent papers [1] - [4] we have reported results on growth
estimates for solutions to initial-history boundary value problems associated
with integrodifferential equations and have presented applications in mechanics
(viscoelasticity) and electromagnetic theory (rigid, nonconducting material
dielectrics). The problems examined may all be placed in the following
common abstract setting: Let H, H+ be real Hilbert spaces with inner-products
<, > and <, > respectively, and associated natural norms [[¢-)]] and
]l(-)lLﬁ we assume that H_c H both algebraically and topologically with
Y > 0 the embedding constant for the identity map 1i: H+ + H. Let H_ be the
dual space of H+ via the inner product of H, so that

llvll_= sup []|<vy,w>{/|lw|l,], and let
we H+

Ne L (H,H), R(*) € Ly((=,=); L_(8,H))

where Ls(ﬂ+,H_) denotes the space of all bounded linear maps from H _ into
H_. We then consider the abstract initial-history value problem for

u € ¢A([0,1; B, T >0
u,, - Nu+ 5 R(e=T)u(T)dT = 0
~tt — w00 ~ -— —_—

1.1) | o - ugs u,(0) = vy (ug, vy € H)

[ w@=u@m, =<T<0

Different assumptions on the past history U are made in the various applicationms,

i.e. in [2] it is assumed that Ejh) € Cl((-w,O); H+) with
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lim ||u(t) - £|],= 0, 1im_||U, - g||,= 0, lim |[u(t)||, = O and
t»o'l s =0 20 ¢ i t—o *

[&Hg('t)”_‘_d‘t < © yhile in [3] we assume that U = 0, = < t < 0. In each
of the applications, however, no definiteness assumptions are made relative
to N or K(+). The derivations in [1] -~ [4] are based on a logarithmic
convexity argument which requires that we restrict our attention, a priori,
to a class of bounded perturbations; this idea of stabilizing an otherwise
unstable solution of the ill-posed problem (1.1) is due to F. John [5]
and for the system (1.1) it is shown in [1] - [4] that the appropriate

classes of bounded perturbations are of the form
(1.2) N ={y € c(o,m; B | [8ug)llle+ < N}
£

for some N > 0. In fact for solutions u € cz([o,'r); H+) of (1.1) which lie
in a class of bounded perturbations of the form N, it has been shown [2]

that the real-valued function
2 2
(1.3) F(t;B,tp) = [|u(®)[|” + B(t + t) " 0st<T,

with B, to arbitrary nonnegative real numbers, satisfies the differential

inequality
(1.4) FF” - F'z 2 -2F(2F(0) + B), 0 < t < T
where
(1.5) F(t) = E(t) + k, sup ||K(t)|| + k, sup ||K (t)]]
1o, = LG, 7 2 i P e L (H,,H)

with E(t) = 4| Igtl |2‘- % < u, Nu. > and k;,k, computable nonnegative constants.

Besides the obvious assumptions on K required by F(0) < @ the only other
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assumption made relative to either N or K(*) is that e )
.,_‘r\-“\\ e
¢ 2 !~§fﬁtviu. o ——
(1.6) -<y, ROy >2« |||, yew [ UUEAnL

with

K2 TY sup ||K (t)]] .
[0,%) t LS(H+,H_)

In the application to one-dimensional isothermal viscoelasticity (1.6) reduces

to the statement that g'(0) < =K, K 2 T sup |g''(t)|| where g(-) is the
(0,»)

relaxation function of the material; it is well-known that the relaxation
functions of one-dimensional isothermal viscoelastic materials must be
monotonically decreasing in time [6] and (1.6) simply says that g(-) must be
decreasing sufficiently fast at t = 0.

Growth estimates for Ilgllz follow directly from the differential

inequality (1.4) once special assumptions regarding E(0), B, tos and the

initial data Yos Yo are made; these estimates apply, as well, to the well-posed
situations previously considered in the literature, i.e., [7]. The restriction
in [1]1 - [4] to time intervals of the form [0,T), T < « and solutions u € N 5
is crucial for the logarithmic convexity argument. The purpose of this note is to

prove that under certain well-defined circumstances it is impossible that there

exist§a solution u € Cz([O,w); H+) of (1.1) which is globally bounded in the

sense that it belongs to a class of bounded perturbations of the form

- ——

1.7 N, = {y € c(C0,®); B)| sup ||v||, <N}
[0,%)

’
for a prescribedN > Q; this will‘Pe accomplished by employing a mixed logarithmic

convexity - concavity argument of the type previously used by this author in [6];




an application to the evolution of the electric induction field in a class

of rigid nonconducting material dielectrics is presented in §3.

2. The Global Nonexistence Theorem

In anticipation of the application we have in mind we shall assume a

past history U of the form

2, -0 < t < _th
(2.1) o(e) =
Hh(t). -:h <st<o0

where t, > 0 is an arbitrary real number, and ||LJ_h||+ € Lz[-tb,OJ. The

hypothesis (1.6) may be weakened to
(2.2) -<y, KOy>20 Vyen,
and we also assume that

[ K(e) = ||k(e) ], (1 g ) Satisfies K(:) € L,(0,%)
8 +' - :

*
(2.3) K(t) = [||k || dt satisfies
=t''L_(H,,H)

L K*(+) € 1,[0,%) with K*(0) = o.
The class N_ may be modified, in view of (2.1) to
Neg={vec(-t,;H) | suwp ||yl <N
B 5 [-th’w) i
for N > 0 and finite and we then want to show that the following result obtains: ‘

Theorem Suppose K(°) satisfies (2.2) and (2.3) and

2
EO) = %l lxoll” - % < ups B ug > < 0with < g), vy > > 0. 1If, for Ny >0

.

(finite) y
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(2.4) |ECo)| 2 5~ No(”“”tho,m) ¥ “K*”tho,«'))

there can not exist a strong)solution of (1.1) which lies in N] _ (NJ with
’

N = NO).

Proof: Assume that u is a strong solution of (1.1) with uc€ N o ieeo,
’

>’

sup )H.\.;H_'_ < Ny, and set G(t) = Hg(t)llz. Then G' = 2 < u, u,

[-th,w

™
¢ =2| Ll_l,tl |2 +2 <y, u > and for any B > 0 we have by direct computation
(2.5)  GG" - (B+1)G 2 = 4(B+UA + 26(<u, u_, > - (28+1)||u ||®)

i B =’ =tt t

2 2 2

where UB(t) = ”.EH llg_tH - <u,u, > 20 by the Schwarz inequality. Thus
for any B > 0

(2.6) cc - (B+1)6 2 2 26R,, 0 < t < ®

B,
where, in view of (1.1) and (2.1)
(2.7) Rg(t) = < u, Nu > - (28+1)]u,| =

-<u, jft l(_(t-'r)g(t)dt >

h

Now rewrite (2.7) in the equivalent form
(2.8) Rg(t) = =(28+1) (| |n, 1% - < u, Nu »

- 28 < u, Nu>-<uy, fft &(t-T)E_(‘r)dT >

h

= -2(2B+1)E(t) - 2B < u, Nu >

- -<u, Ethﬁ““)&(‘)“ >

(1) u € C2([0,°°); H+) is a strong solution provided u, € Cl([0,°°); H+) and

By, € C(L0,®); H).




and then take the inner-product (in H) of (1.1) with u, and integrate to

obtain

2.9 E@®) = E© - f5<u, ﬂthyr—k)gx)dx > at
Sustitution of (2.9) into (2.8) now yields

(2.10)  Rg(t) = -2(2B+1)E(0) - 28 < u, Nu >

+ 2028+41) fE < u, [0, R(-DuGrar > at
h

: -<u, fft K(t-T)y(T)dT >
: h

: We now take the inmer-product (in H) of (1.1) with u(t) and obtain, in view

of the definition of G(t)

e
(2.11) 56 = |lu 12+ <u Nu3 - <y, [5 RE-Damar >
h
which, in turn, implies that
" 2
(2.12) -2B < u, Nu>=-BF + 26||u, ||

-28 < u, [5 K(t-T)u(D)aT >

*h

Substituting from (2.12) into (2.10) then yields

(2.13) RB(t) = —BG' - 2(2B+1)E(0) - (2B+1) < u, fft K(t-T)u(T)dT >
h

+20284) [§ < ug, ffthg_(t-k)g(k)dx > dt

and, therefore, the differential inequality (2.6) is equivalent to

-
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(2.14) G - (———zgi) ¢'% 2 - 4GE(0) - 26 < u, ﬁt K(e-T)u(1)dT >
h
+ 4G f(t) <.2T’ J.zthl(-('t-)\)g(k)dk > 4t

= 26[2|EC0) | - < u, Ift K(E-T)u(1)dT >
h

+ 2 f; <£T’ '[Et _K.(T—A)E(A)d)\ > dT1].

However,
<up 1 R-Nu®ak > = - < u(D), KO)u(® >
h

- < u(1), II:ET(T")‘)E.()‘M)‘ >
h

+ -:—T < u(m), [zthi(t-)\)g()\)d)\ >

and, therefore, (2.14) may be rewritten in the form

(2.15) 6 - (—z-g{—i-) ¢'? > 2602]E(0)] -

- I(t) 3 55y Ift K (T-A)u)dr >
h
-2 <£0, I?th‘ls(-’[)g(‘[‘)d‘r >

* < u, [ft R(t-T)u(T)dT > ]
h

where, in view of our hypothesis relative to K(0) we have dropped the term
- f; < 3(‘[), _1_(_(0)2_(1) > dT. The following estimates for the integrals on the

right-hand side of (2.15) now obsain:




{ I € u., [_(_)th&(-na(r)dr > } 2

s
[ugl HECD u(t) ||, d1 <
L.oI f—th L (H ,H) | L- l |4

B ST NI e i e R

0
Yllgol s ; suPOJHE.”.,. f_thllﬁ(-f)”l_ (H,,H i
-t , s 7

h

sup | |ull )2 h

2
WollKHL o,

i so that

4

1 0 2
(2.16) - <y, f-thE.(‘T).E(‘)d‘ >z -] |K| |L1[0,°°)
Also,

| < u, Ift R(t-T)u(T)dT > | <
h

|h£|| It | 1K (t-T) u(T)]|,dT <
_th = I ILS(H+’H~) l L_. I |+

sup |lul])2 (t 2
Y([-th,‘”) +) I-thl Iﬁ(t L I lLs(H+,H_)dT

t

2 t+ h
£ fo HEON o 5y
S -

2
< W9 |K] | i
L,00,»)

and, therefore,

(2.17) <u, 5 K(t-T)u(T)dT > 2 -YN(Z,I 1] |

h

Ll[O,@)

Finally,

i SR

FICTRPT =

A ot e b b el i e o e e



| [8 < u(1), ﬁt&(b}\)g()‘)d)\ >4t | <
h

fg I <2(T)’ Izth-!'(-[(T-A)g(A)dA > l dT <

o

00 T
I (I lH(T) I I I-thl w‘[ (T=1) I ILS(H+,H._) I I,E(A) ' I+d)‘)dT

3 Y( sup H_\_l,l|+)2 r ﬁ:h”l-(r(T'x)HL (B, ,dAdT
2 £
™+
2
> Y([-st}“x:m)l‘gI “’) fo 1o %”K (p)HL fir pa g o
T+
2 * th
sy [o K*@) |, Mt
- YN(Z) I:;K*(T+th)d‘t

2 * 2%
- W; j:hK A)ax < WK IILl[O,m)
in view of our assumption that K*(0) = 0. Thus,

(2.18) " jg < w(m), jfth&(r-x)g(k)dx > dT > -mgllx*lltho,w)

Combining the estimates (2.16) - (2.18) with the differential inequality (2.15)
now yields

{

Z *
(2.19) ¢e (23+1)G 2 2G[2|E(0) | - 3YN0{||KHL1[O’°°) + ||k ||L1[o’m)}3

and in view of our hypothesis (2.4),relative to |E(0)|, (2.19) implies that

e " B+l 12
(2.20) GG 28"‘1)(;




Now set a(B) = B+1/2B+1; note that % < a(B) < 1, for all B > 0, with «(B) - k+

as B>+ ® apd a(B) ~ 1 as B + 0+. Let H(t) be any real valued nonnegative

twice continuously differentiable function on [0,%) and Y any real number

0 <Y < 1; then

(1-Y) ] ¢

(2.21) [ ‘() = a-na " Hemma @) - ')

Applying this last identity with G(t) in place of H(t), and Y = a(B), for

any B > 0, and using (2.20) we easily find that

[G(l-ﬁl(B))_-l Lk

(2.22) (£) 206, 0<¢g<w

which implies that
(2.23) [N "y 5 [cA-B) "

~a(B)

= a6 P ) ¢'0)

A second integration then yields

(2.24) BN by > (1-a(8)c™*® ()6 '(0ye + LB (g

= ¢ B oyr1 + a8 %(%)l t]

and as (1-a(B)) > 0, for all B > 0,

> 1
0) t] 1-a(B)

(2.25) G(t) = G(0) [1 + (1-a(B)) (g(o)

-

LS

' ]
Clearly, it follows from (2.25) and the fact that G (0) = 2 <_x.10,_\10

>>0




B

- Rt 2 i

o

=
E |

!
E |

=13=

that 1lim G(t) = + <. But G(t) = ||£(t)||2 and therefore 1lim Hg(t)llz =+ o,

t >+ t >+ ®
However, via the embedding of H_ into H, [lue) [| < v l}_(t) | |+, 0<t <o, and
so lim l[&ﬁt)|l+ = + ©, which implies that sup ||2(t)||+ = 4 o,

£ =k —th’co

L]
contradicting the assumption that u € N0 2
e >

Q.E.D.

Remark The above Theorem has, of course, an immediate converse, i.e., if there
L}

exists a strong solution u € No o ©f (1.1) then E(0) must either be nonnegative
- >

or, if E(0) < 0, then [E(0)| must be sufficiently small, {i.e.,

3.2 3
|E)| < 7YN0(IIKIIL1[o,m) + |1k ”tho,w))

If N satisfies an appropriate definiteness condition, e.g., < v, Nv > 2 7\] Igl Ii,

VX €EH_, A >0 then

2E(0) = ||y,l|? - Nug >

< 4y Ny
2 2
< Plgghl® = MlgghiZ < o
Provided A| |gol If_ > ||y_0| |2. In particular we would then have

2|E(0)] > Hlﬁollf - ”onz and, therefore, if

2 1 2 3Y * 2
gl 2 1Lt 1% + 3 C1IKI o my *+ 1K1y 0,0

=i 2
=5 Hypl 17+ XOLA,Np)

it follows that no strong solution of (1.1), with initial data Yys Vo could

]
exist in N0 3 this result is nom-trivial only if
’

2




which will certainly be the case, for any No > 0 and finite, if the

coerciveness constant A is sufficiently large and/or the embedding constant

Y is sufficiently small.

Remark Under appropriate assumptions on E(0) relative to

sup ||K]| and sup ||K, ||
o =L @m0 NS @)

IQH must grow exponentially on [0,T), T > O finite, for u € N. 1f
\J

0,»
remain valid on [0,T) but we can not take the limit as T + + ® in [2]

we replace N by N the exponential growth estimates for ||g|] in [2]

in view of the basic hypothesis of that paper, i.e., (1.6).
Remark The estimate (2.25), valid for all B > 0, in fact implies that

1

G(t) = G(0) 1lim [1 + (1-a(6>>(%§%)t31'°‘<3)

g+ ot

= G(0) exp(G—Gi(—g))-:), 0<t<w
1

in view of ®(B) » 1™ as B » o' and the elementary fact that 1lim (1+Xx)k =

A~ U+

3. An Application in Electromagnetic Theory

In two recent works [3], [7], we have considered the behavior of
electric fields and electric displacement fields in rigid, nonconducting

dielectrics with memory of the type introduced by Hopkinson [8] in an

effort to understand the phenomena of residual charge in Leyden jars. The

it has been shown in [2] that

X

e

Maxwell-Hopkinson dielectric is governed by the pair of constitutive equations

- + D(Xet) = € Ex,t) + ft'n¢(t—'t)£(}-,'t)d‘t

(3.1)

W) T P




=3 3=

where, of course, D, E, H, and B are , respectively, the electric displacement
(or induction) field, the electric field, the magnetic intensity, and the
magnetic induction. It is usually assumed that ¢$(t), t 2 0, is a (sufficiently)
smooth and monotonically decreasing function of t. The fields D, 1 are

introduced so as to simplify the formulation of Maxwell's equations and, in

particular, D = €o§_+ P_where € > 0 is a known physical constant and P is
the polarization field vector in the dielectric, which is assumed to be
nonconducting (i.e., no free mobile charges so that div D = 0).

Let Q ¢ R" be a bounded open domain with smooth boundary 92 (smooth
| enough to apply the divergence theorem). Let ! ¢ Q. We assume that Q/ﬁ

is filled with a perfect conductor, so that D = 0 in Q/S$t and on 9Q, and

that {} is filled with a nonconducting rigid dielectric of Maxwell-Hopkinson
type so that the constitutive equations (3.1) apply in §{i. On at,

i.e., at the interface between the dielectric and the perfect conductor,

D - n = 0 where n is the unit outward normal to 3@. It has been shown in
[3] that if we combine Maxwell's equations in {, with

(i) the constitutive relations (3.1) with

.2, -0 < T < -th
a2t =
-Eh(’-f"t)’ -th <T<O

for some th >0

E | (ii) the inverted constitutive equation

EGt) = DG, + €[5 o(e-1)p(x, VAT
h

e ~

S ———— T - - S ———




b=

o) = I (-1)""(¢)

n=1

01 = M), 0%(e) =[5, ot (-1 (1aT, n 2 2
h

obtained from (3.11) via the usual method of successive approximations and

(iii) the elementary vector identity

LA = grad(div A) - curl curl A

valid for A(*) sufficiently smooth on { (and applied to E(-,t) at each

t € [-:h,w)) we obtain the following equation for the evolution of

| the components Di(x,t) of the electric displacement field in g x [-th,w):

2
3p
3 gl & §* -T)v% -
(3.2) = &x,t) - VD x,t) - ¢ j_thé(: T)V°D, (x,T)dT = 0

=

where k = el From the homogeneity of (3.2) and the fact that D = 0 in /8

it follows that (3.2) is satisfied everywhere in Q for -th s t<e®, On g

| o2 we have

(3°33) Di(_’_ﬁyt) = 0’ (Eat) € aﬂ X [‘thsm)

and to this we append initial data of the form

3D -
(3.3b) D (x,0) = £,(), 7 (x,0) = g, x € B

where it is assumed that f 1(-), g;(*) are continuously differentiable on { ‘:

and vanish identically in /8. In view of (3.2) and the previous specification

of a past history for E(x,t) we also have

~ , [
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2' -2 < T < -th
(3.3c) D(x,T) =
fotg € (.

If we now take for H, H , H_ the common Sobolev spaces H = 1.2(52)3 = AZ(Q)’

u+ - (ué(g))3 Elltl)(ﬂ), and H_ = (H‘l(ﬂ))3 -3_11-1(9) and define operators

Ne L @, B and k() € 12((=,@); L@, B) via

v
(3.4a) ®y), = % 3"3;" . X € H®
J
(3.4b) Q.(.(t)!)i - - Q(t)(_)il)i, b4 € Eg(n), t E [-th.m)

then the initial-history boundary value problem (3.2), (3.3a) - (3.3c) assumes

the form
' Ree “ 207" ffthf_(t"t)g('f)d'f =0, -t st<»
(3.5) 4 2(0) -.f'—l)t(o) -i

Q, =© < T < =t
-’ h

D(T) =

.

-Dh(T)’ -t, sT<O0

h

an initial-history value problem for D € Cz([—th,“);_ﬂé), where we need only

1
assume that £, g € Hy(Q), “-D.hl Iﬂl € L,[-t,,0), and where, of course, it is
=0
understood that the derivatives in (3.4a), (3.4b) are to be taken in the

distribution sense.

= ’ [
For the spaces -112(9)’ _ﬂg(ﬂ) introduced above we have the familiar inner-

products

G r——
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T®YT L@ Jquyvydx
(3.6) du, dv
b F LT la 3§1'3§l dx
' Q) 3 3

e

'
The set N, ., introduced in §2 thus has the form
’

- 20 ¢ , i
ke Y aax

dx

(3.7) Mo, = {v & c([-ty,™); §0(9)| sup [fg ax 5 d4x17 s Ny}
[-t,»®) - s

while
| (3.8)  E© =Xlgll> -%<f, NE>
; i ~2 = ~2
d
| X 8%,
‘ it 198181 . e 2k IQ fi axjax:l dx

of of, B,
1 i e
| =Y [g,8,dx -5 [§f, =— - 5 1 4x]
1 08184 P A Hed = Ig axj %
! ar, 3,
: - %0 g smyax+ic fg =, 3xj .
g .1 2

i - s tllgllf + 4 11817
H =0
5 2
1 HEH o

so that E(0) < 0 1ff k < 0 with |k| > 20

lgll 5

Also, for any v € gé(ﬁ)
{

(3.9) "L EOw =- fq vy [KO)]y dx

32v




$(0 2
ks —{_2"llill 1 2 0
- P

if k < 0 and $(0) 2 0. Note now that

”Qvi [K(t)y], dx

(3.10) Hﬁ(t)” 1 -1, = sup

e RS T
H
=0

azvi

)] g vy oo, 4zl
- : R

3 2

el lkl-llﬂlnl

=0

o N(t)l/lkl, - < t < ®

and that, in a similar manner,

(3.11) ||5t(t)||,_ @, B - [®Ct) |/ x|
8 @)’ e=

Therefore, for the problem at hand we have

(3.12) K(e) = |oce) [/]k], K*(t) = 1%[{ [#(t) [dt

and the hypotheses (2.3) will be satisfied provided
[o 1e®)]de <=, | |¢t) |de| o = 0, and

f;’ f; [#(A) [dAdt < o,

With the above hypotheses relative to k, |®(-)], |é>(-)|, ®(0), and the

-
additional assumption that <L 3->L > 0 it then follows from the Theorem
=2
of §2 that if for No > 0 (finite)

e e —— e

R e e

—— s
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(3.13) ||g|21 2 |k|.||g] lstz + 3m(2, ¥ G |o(t) |de
H
=0

+ [ I5 180 |drde]

there can not exist a strong solution of the initial-history value problem

]
(3.5) which lies in the class of bounded perturbations M0 »* In passing,
’

we remark that Y, the embedding constant for the identity map i:
gé(ﬂ) -+ LQ(Q) depends soley on the region . For  such that Y is very

small (<61) and with a memory function ¢(t) such that ||K]|| and

IIK*!ILIEO,G) are also very small (<62'6) (3.13) is implied by

2 2 2
(3.14) el 2 [l | gl L, * %%
—o

’
which indicates that as 6152 -+ 0 the existence 1nh40 « Of a solution
’

4 to the initial-history value problem (3.5) depends essentially on the

relationship between the relative magnitudes in_gé and.gz of the initial-values

of the electric displacement field and its first time derivative.
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